
The tumor milieu consists of  numerous cell types each existing in 
a different environment. Each cell type has unique metabolic 
demands that enable specific function. In addition, each cancer 
experiences a distinct nutrient environment, distinct engagement 
of  extracellular signals, and may derive from a different cell of  
origin thus possibly having distinct mutational patterns. Therefore, 
at the cellular level, each cell within the tumor is likely to have a dif-
ferent metabolic status. However, nearly all observations of  human 
tumor metabolism in vivo have been conducted using measure-
ments obtained from bulk tumors. Direct observations of  cellular 
metabolism in vivo at single-cell level is not established.

Here, we develop a computational pipeline to study metabolic pro-
grams in single cells. In two representative human cancers, mela-
noma and head and neck, we apply this algorithm to define the 
intratumor metabolic landscape. We report an overall discordance 
between analyses of  single cells and those of  bulk tumors with 
higher metabolic activity in malignant cells than previously appre-
ciated. Variation in mitochondrial programs is found to be the 
major contributor to metabolic heterogeneity. Surprisingly, the 
expression of  both glycolytic and mitochondrial programs strongly 
correlates with hypoxia in all cell types. Immune and stromal cells 
could also be distinguished by their metabolic features. Taken 
together this analysis establishes a computational framework for 
characterizing metabolism using single cell expression data and 
defines principles of  the tumor microenvironment.

IntroductionIntroduction ResultsResults

We developed a computational pipeline for analyzing metabolic 
gene expression profiles at the single-cell level (Fig. 1). We applied 
missing data imputation and data normalization to gene expression 
profiles to account for the influence of  technical noise. We then 
characterized the global structure of  single-cell metabolic pro-
grams using clustering analysis, identified cell type-specific meta-
bolic programs using quantitative metrics we developed, and 
designed algorithms for quantitation of  metabolic heterogeneity of  
malignant and non-malignant cells. We applied this pipeline to two 
single-cell RNA-seq datasets for human melanoma and HNSCC, 
which include an expansive set of  gene expression of  4054 cells and 
5502 cells respectively.
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Fig. 1 Schematic representation of  the scRNA-seq data analysis pipeline. 
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Fig. 2 Landscape of  metabolic gene expression at single-cell level. (a) t-SNE plot of  metabolic gene 
expression profiles of  malignant cells from the melanoma dataset. The color of  each dot indicates the 
tumor which the cell comes from. (b) Same as in (a) but for the head and neck squamous cell carcino-
ma (HNSCC) dataset. (c) Clustered correlation matrix showing Spearman’s rank correlation coeffi-
cients of  metabolic gene expression profiles between malignant cells in the melanoma dataset. (d) 
Same as in (c) but for the HNSCC dataset. (e) t-SNE plot of  metabolic gene expression profiles of  
non-malignant cells from the melanoma dataset. The color of  each dot indicates the tumor which the 
cell comes from. (f) Same as in h but for the HNSCC dataset. 

Compared to bulk samples, single cells provide high resolution in characterizing metabolic he-
terogeneity. While bulk RNA-seq measures the average expression levels over a mixture of  dif-
ferent cell types thus masking the difference between cell types in the same sample. Our results 
show that pathway activities are more variable between different types of  single cells than bet-
ween bulk tumors and normal tissues. The malignant cells undergo a global up-regulation of  
metabolic pathway activity which can only be detected at the single-cell level.
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Fig. 3 Cell type-specific metabolic reprogramming. (a) Difference between bulk and single-cell 
RNA-seq in characterizing gene expression profiles in tumors. (b) Distributions of  pathway activities 
in different cell types from the HNSCC scRNA-seq dataset (left) and in bulk tumors and normal 
samples from TCGA (right).

We developed a workflow (Fig. 4a) to quantitate the intratumor metabolic he-
terogeneity. We found that the mitochondrial OXPHOS is the most important 
contributor to intratumoral metabolic heterogeneity for both malignant (Fig. 
4b) and non-malignant cells (Fig. 4c).
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Fig. 4 Intratumoral metabolic heterogeneity. (a) Workflow for quantitating metabolic he-
terogeneity. (b) Metabolic pathways enriched in genes with highest contribution to the 
metabolic heterogeneities among malignant cells from different tumors in the melanoma 
dataset. (c) same as in (b) but for different types of  non-malignant cells.

The subpopulations of  non-malignant cells reprogram their metabolism to es-
tablish their roles in interacting with other cell types and modulating the 
tumor microenvironment.

Fig. 4 Metabolic features of  non-malignant cell subtypes. (a) Gene markers and their ex-
pression levels used for classifying fibroblast cells in the HNSCC dataset into CAFs and 
myofibroblasts. (b) Top 10 metabolic pathways enriched in CAFs or myofibroblasts in the 
HNSCC dataset. Significantly enriched pathways with GSEA p-value < 0.05 are highligh-
ted in red (higher in myofibroblasts) or blue (higher in CAFs)
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Malignant cells exhibit high metabolic plasticity which leads to both patient specific (Fig 2 a-b) 
and genotype specific (Fig 2 c-d) metabolic reprogramming. In contrast, non-malignant cells 
in the tumor microenvironment (TME) exhibit no distinguishable metabolism differences 
between patients (Fig2. e-f).

In this study, we analyze metabolic gene expression profiles of  more than 9000 
single cells from two representative human tumor types including melanoma and 
squamous cell carcinoma of  the head and neck (HNSCC). We find that activities of  
metabolic pathways in malignant cells are in general more active and plastic than 
those in non-malignant cells, and the metabolic features of  single cancer cells are 
poorly captured by measurements done with bulk tumors. Variation in mitochon-
drial activity is the major contributor to the metabolic heterogeneities among both 
malignant cells and non-malignant cells, and, strikingly, the activities of  glycolysis 
and oxidative phosphorylation both correlate with hypoxia at the single-cell level. 
We also identify metabolic features of  different immune and stromal cell subtypes 
and find patterns distinct from behaviors of  these cells in ex vivo culture conditions. 
These findings begin to unravel principles of  how malignant transformation affects 
the metabolic phenotypes of  tumor and non-tumor cells within the tumor microen-
vironment.
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